### Fragment and Geometry Aware Tokenization of Molecules for Structure-Based Drug Design Using Language Models

Cong Fu, Xiner Li, Blake Olson, Heng Ji, Shuiwang Ji

Texas A&M University

Yijingxiu Lu

# **Table of Contents**

- Introduction
- Background
- Preliminary
  - Rigid transformation
  - SE(3)
- Model Architecture
  - Translate molecule into sequence of fragments
  - Overall framework
- Experiments
- Summary

# Introduction

In this work, authors propose Frag2Seq:

- Frag2Seq: Fragment-based molecule generation (target-aware) with language model.
  - ensure language model's ability in simulating the physical and chemical properties of molecules.
  - encode protein context information in LMs for efficiently capturing interaction information.
- SE(3)-invariant sequences that preserve geometric information of 3D fragments.

### Input:

- Molecule: sequence representation Frag2Seq
- Protein: node embedding of backbone from ESM-IF1

### Model Architecture:

- **GPT:** learn distribution of molecule fragment tokens.
- Cross attention: protein node embedding (k,v) x ligand token embedding (q)



# Background

### Structure-based drug design (SBDD):

**Definition**:

• Design and optimize molecules to interact specifically and effectively with biological targets.

### Challenges:

- Requires the model to capture complicated protein-ligand interaction while improving druglikeness of designed molecules.
- Current methods only consider atom-wise generation.
- Diffusion models are inefficient.

### Language Model (LM):

Advantages:

- Can handle large datasets with prominent efficiency over diffusion-based methods.
- Learn from massive biological and chemical texts for diverse potential tasks.

### Limitation:

• Difficulty in applying LM on geometric graph data.

# **Pipelines**

- 1. Convert 3D molecules into fragment-informed sequences.
  - Split 3D molecules into 3D fragments.
  - Construct a bijective mapping between 3D fragments and SE(3)-invariant sequences.
- 2. Extract protein pocket embedding from pre-trained folding model (ESM-2).
- 3. Use cross-attention mechanism to generate target-aware molecules with language model.



# Preliminary

**Rigid transformation:** 

$$A = \begin{pmatrix} R & \mathbf{t} \\ 0 & 1 \end{pmatrix}$$

where R is a 3 x 3 rotation matrix, and t is a translation vector

Inverse of a general rigid transformation:

$$\begin{pmatrix} R & \mathbf{t} \\ 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} R^T & -R^T \mathbf{t} \\ 0 & 1 \end{pmatrix}$$

Special Euclidean Group SE(3)

- The group of rigid transformation (Rotation + Translation)
- Inner product:

$$\begin{pmatrix} R_2 & \mathbf{t}_2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} R_1 & \mathbf{t}_1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} R_2 R_1 & R_2 \mathbf{t}_1 + \mathbf{t}_2 \\ 0 & 1 \end{pmatrix}$$

# Preliminary

#### **Spherical Coordinates:**

• conversion of rectangular coordinates to spherical coordinate:

 $x = r (\sin \theta) (\cos \Phi)$   $y = r (\sin \theta) (\sin \Phi)$  $z = r (\cos \theta)$ 





## Atom Ordering based on 3D Graph Isomorphism

- SMILES -> Canonical SMILES
  - Let L : M → L be a function that maps a molecule M ∈ M, the set of all finite 3D molecular graphs, to its canonical order L(M) ∈ L, the set of all possible canonical orders,

$$L(M_1) = L(M_2) \Leftrightarrow M_1 \cong_{3D} M_2$$



# **3D Molecule Fragmentation**

#### **Molecule to Fragments:**

- Cutting rotatable chemical bonds iff (to prevent breaking the functional groups):
  - 1) The bond is not in a ring.
  - 2) The bond type is single.
  - 3) The degree of the beginning and end atom on the bond is larger than 1.

Sort fragments based on the order of their appearance in the canonical SMILES representation.





## **Fragment-based 3D Molecule Tokenization**

### SE(3)-Equivariant Molecule and Fragment Frames Construction:

- Calculate SE(3)-invariance property:
  - Sort the fragments based on their first ranked atom in the canonical order L(M).
  - Fragment center: calculated as the average of atom coordinates.
  - Molecule local frame: calculated with the first three non-collinear fragment centers  $(l_1, l_2, l_m)$  as:

 $\boldsymbol{x} = \operatorname{normalize}(\boldsymbol{v}_{\ell_2} - \boldsymbol{v}_{\ell_1}), \ \boldsymbol{y} = \operatorname{normalize}\left((\boldsymbol{v}_{\ell_m} - \boldsymbol{v}_{\ell_1}) \times \boldsymbol{x}\right), \ \boldsymbol{z} = \boldsymbol{x} \times \boldsymbol{y},$ 

Where m = (x, y, z) is defined as the molecule local frame

• Fragment local frame: calculated with the first three non-collinear atoms in a fragment.



### **Fragment-based 3D Molecule Tokenization**

#### Homogeneous transformation:

• Construct homogeneous transformation matrices from rotation matrices R and translation vectors t:

$$T_{\mathfrak{m}\to\mathfrak{w}} = \begin{bmatrix} R_{\mathfrak{m}\to\mathfrak{w}} & t_{\mathfrak{m}\to\mathfrak{w}} \\ \mathbf{0} & 1 \end{bmatrix}, \ T_{\mathfrak{g}\to\mathfrak{w}} = \begin{bmatrix} R_{\mathfrak{g}\to\mathfrak{w}} & t_{\mathfrak{g}\to\mathfrak{w}} \\ \mathbf{0} & 1 \end{bmatrix},$$

From molecule coordinates to fragment coordinates:

$$T_{\mathfrak{g}\to\mathfrak{m}} = T_{\mathfrak{m}\to\mathfrak{w}}^{-1}T_{\mathfrak{g}\to\mathfrak{w}} = \begin{bmatrix} R_{\mathfrak{m}\to\mathfrak{w}}^T & -R_{\mathfrak{m}\to\mathfrak{w}}^T \boldsymbol{t}_{\mathfrak{m}\to\mathfrak{w}} \\ \boldsymbol{0} & 1 \end{bmatrix} \begin{bmatrix} R_{\mathfrak{g}\to\mathfrak{w}} & \boldsymbol{t}_{\mathfrak{g}\to\mathfrak{w}} \\ \boldsymbol{0} & 1 \end{bmatrix} \\ = \begin{bmatrix} R_{\mathfrak{m}\to\mathfrak{w}}^T R_{\mathfrak{g}\to\mathfrak{w}} & R_{\mathfrak{m}\to\mathfrak{w}}^T (\boldsymbol{t}_{\mathfrak{g}\to\mathfrak{w}} - \boldsymbol{t}_{\mathfrak{m}\to\mathfrak{w}}) \\ \boldsymbol{0} & 1 \end{bmatrix}.$$

$$R_{\mathfrak{g} \to \mathfrak{m}} = R_{\mathfrak{m} \to \mathfrak{w}}^T R_{\mathfrak{g} \to \mathfrak{w}}, \quad \boldsymbol{t}_{\mathfrak{g} \to \mathfrak{m}} = R_{\mathfrak{m} \to \mathfrak{w}}^T (\boldsymbol{t}_{\mathfrak{g} \to \mathfrak{w}} - \boldsymbol{t}_{\mathfrak{m} \to \mathfrak{w}}).$$

Convert atom local coordinates from fragment local frame back to the world frame:

$$\boldsymbol{t}_{\mathfrak{g} 
ightarrow c(\mathcal{G})} = V^{\mathfrak{m}}_{c(\mathcal{G})} - \boldsymbol{t}_{\mathfrak{g} 
ightarrow \mathfrak{m}},$$

# SE(3)-Invariant Fragment Local Representations

#### Represent fragment center with spherical coordinates:

• Convert the coordinates of each fragment center to spherical coordinates  $d, \theta, \phi$  under the molecule frame m = (x, y, z):

$$egin{aligned} &d_{\ell_i} = ||oldsymbol{v}_{\ell_i} - oldsymbol{v}_{\ell_1}||_2, \ \ heta_{\ell_i} = rccos\left((oldsymbol{v}_{\ell_i} - oldsymbol{v}_{\ell_1}) \cdot oldsymbol{z}/d_{\ell_i}
ight), \ &\phi_{\ell_i} = ext{atan2}\left((oldsymbol{v}_{\ell_i} - oldsymbol{v}_{\ell_1}) \cdot oldsymbol{y}, (oldsymbol{v}_{\ell_i} - oldsymbol{v}_{\ell_1}) \cdot oldsymbol{x}
ight). \end{aligned}$$

#### Represent fragment local frame with rotation vector:

• Obtain the rotation angle  $\psi$  and rotation axis  $a = (m_{xi}, m_{yi}, m_{zi})$  from the rotation matrix

#### Final fragment-position vector:

 $x_{l_i}^* = [s_i, d_i, \theta_i, \phi_i, m_{xi}, m_{yi}, m_{zi}]$ 

• where  $s_i$  is the canonical SMILES string of fragment  $g_i$ 



# **Fragment and Geometry Aware Tokenization**

Frag2Seq:

• Given a molecule M with k fragments, frag2seq is defined as the concatenation of fragmentposition vectors in canonical order:

$$Frag2Seq(M) = concat(x_{l_1}^*, \cdots, x_{l_k}^*)$$



## **Overview of Frag2Seq pipeline**

**Objective function:** 

• Next token prediction:

$$\mathcal{L}(U) = \sum_{i} \log p_{\theta}(u_i | u_{i-1}, \cdots, u_1).$$



### **Experiments**

#### Dataset:

- CrossDocked: docking pose dataset that curated from PDBbind
  - Train: 100,000 protein-ligand pairs.
  - Test: 100 proteins.

#### **Baselines:**

• Auto-regressive methods:

3D-SBDD, Pocket2Mol, GraphBP

• Diffusion methods:

TargetDiff, DecompDiff, DiffSBDD

#### **Evaluation Metrics:**

- Vina Score: estimated binding affinity.
- **High Affinity**: percentage of generated molecules that have higher binding affinity than reference.
- **QED**: measure of drug-likeness.
- **SA**: synthetic feasibility.
- **Diversity**: pairwise diversity of generated molecules for a binding pocket.
- Lipinski: measure of drug-likeness (Lipinski's rule of five).
- **Time**: time cost to generate.

### Results

**Overall comparison:** 

• Achieves better performance compared to baseline methods

Drug-likeness:

- **QED** and **Lipinski** 
  - Frag2Seq generated molecules have better drug-like properties

### **Binding Affinity:**

- Vina score and High Affinity
  - Frag2Seq method achieves the best binding affinity

| Methods                 | Vina Score $(\downarrow)$ | High Affinity (†) | QED (†)          | SA (†)           | Lipinski (†)     | Diversity (†)    | Time $(s, \downarrow)$ |
|-------------------------|---------------------------|-------------------|------------------|------------------|------------------|------------------|------------------------|
| Test set                | $-6.871\pm2.32$           | _                 | $0.476 \pm 0.20$ | $0.728 \pm 0.14$ | $4.340 \pm 1.14$ | _                | _                      |
| 3D-SBDD*                | $-5.888\pm1.91$           | $0.364 \pm 0.31$  | $0.502 \pm 0.17$ | $0.675 \pm 0.14$ | $4.787 \pm 0.51$ | $0.742 \pm 0.09$ | $15986.4 \pm 9851.0$   |
| Pocket2Mol*             | $-7.058\pm2.80$           | $0.515 \pm 0.31$  | $0.572 \pm 0.16$ | $0.752 \pm 0.12$ | $4.936 \pm 0.27$ | $0.735 \pm 0.15$ | $2827.3 \pm 1456.8$    |
| GraphBP*                | $-4.719\pm4.03$           | $0.183 \pm 0.21$  | $0.502 \pm 0.12$ | $0.307 \pm 0.09$ | $4.883 \pm 0.37$ | $0.844 \pm 0.01$ | $1162.8\pm438.5$       |
| TargetDiff*             | $-7.318\pm2.47$           | $0.581 \pm 0.31$  | $0.483 \pm 0.20$ | $0.584 \pm 0.13$ | $4.594 \pm 0.83$ | $0.718 \pm 0.09$ | $\sim 3428$            |
| DecompDiff <sup>†</sup> | $-6.607\pm2.11$           | $0.423 \pm 0.25$  | $0.496 \pm 0.21$ | $0.659 \pm 0.14$ | $4.493 \pm 1.02$ | $0.722\pm0.10$   | $\sim 6189$            |
| DiffSBDD*               | $-7.177\pm3.28$           | $0.499 \pm 0.30$  | $0.556 \pm 0.20$ | $0.729 \pm 0.12$ | $4.742\pm0.59$   | $0.718 \pm 0.07$ | $629.9 \pm 277.2$      |
| FLAG <sup>†</sup>       | $-6.389\pm3.24$           | $0.478 \pm 0.34$  | $0.487 \pm 0.19$ | $0.702 \pm 0.15$ | $4.656 \pm 0.74$ | $0.701 \pm 0.14$ | $1289.1 \pm 378.0$     |
| DrugGPS <sup>†</sup>    | $-6.608\pm2.38$           | $0.421 \pm 0.24$  | $0.467 \pm 0.21$ | $0.628 \pm 0.15$ | $4.495 \pm 0.99$ | $0.738 \pm 0.10$ | $1007.8 \pm 554.1$     |
| Lingo3DMol <sup>†</sup> | $-7.257\pm1.69$           | $0.625\pm0.36$    | $0.269 \pm 0.15$ | $0.656 \pm 0.08$ | $3.121 \pm 1.25$ | $0.480 \pm 0.12$ | $1481.9 \pm 1512.8$    |
| Frag2Seq                | $-7.366 \pm 1.96$         | $0.653 \pm 0.33$  | $0.645 \pm 0.15$ | $0.642\pm0.11$   | $4.989 \pm 0.11$ | $0.711 \pm 0.07$ | $48.8 \pm 14.6$        |

### Results

Examples of generated 3D molecules for a specific protein pocket (PDB id: 4m7t):

- **Reference Molecule:** Provided in the test set.
- **Ours Molecule:** Generated by Frag2Seq.
  - Vina: lower, indicates higher binding affinity
  - **QED:** higher, indicates more drug-likeness

Confirms the method's effectiveness in protein-ligand interaction modeling and molecule generation.



Reference PDB id: 4m7t



Vina: -7.8 QED: 0.63

### Results

**Empirical distribution of carbon-carbon bond distances analyze:** 

- Reference Distribution:
  - Exhibits two distinct modes.
- Performance of Other Methods:
  - Most methods: Can only capture one mode due to mode collapse.
  - TargetDiff: Exhibits two modes but suffers from the oversmoothness issue.
  - **Frag2Seq:** Better captures the two modes in the reference distribution.

### Sampling Efficiency:

- Significantly better sampling efficiency than baseline methods.
- Due to: Simplified generation pipeline and Fragment-based generation strategy



| Methods    | Parameters        | Memory        | Sample/second |
|------------|-------------------|---------------|---------------|
| 3D-SBDD    | 1.2 <b>M</b>      | 3.4GB         | 0.005         |
| Pocket2Mol | 3.7M              | 1.2GB         | 0.008         |
| DrugGPS    | $5.1 \mathrm{M}$  | 2.5 GB        | 0.73          |
| TargetDiff | 2.8M              | 1.8 <b>GB</b> | 0.01          |
| Frag2Seq   | $134.3\mathbf{M}$ | 2.2GB         | 2.0           |

## Summary

#### Strengths:

- SE(3)-Invariant Tokenization Method
  - Preserves important 3D geometric information
  - Mathematically rigorous proof
- Fragment-Based Generation
  - Reduces computational complexity
  - Enhances drug-likeness
- Applying Language Models to Structure-Based Drug Design
  - Novel integration of LLMs with SBDD

#### Weaknesses:

- Simple Canonical SMILES-Based Sequence Construction
  - Relies on Simple Canonical SMILES
    - Structurally similar molecules may have significantly different token representations.
- Direct Cross-Attention Integration
  - Lacks additional optimization strategies
  - Reduced interpretability